WELFARE: EFFICIENCY

MICROECONOMICS
Principles and Analysis
Frank Cowell
Welfare Principles

- Try to find general principles for running the economy
 - may be more fruitful than the constitution approach
- We have already slipped in one notion of “desirability”
 - “Technical Efficiency”
 - …applied to the firm
- What about a similar criterion for the whole economy?
 - a generalised version of efficiency
 - subsumes technical efficiency?
- And what about other desirable principles?
Overview

Welfare: efficiency

Pareto efficiency

CE and PE

Extending efficiency

Fundamental criterion for judging economic systems
A short agenda

- Describe states of the economy in welfare terms...
- Use this analysis to define efficiency
- Apply efficiency analysis to an economy
 - Use standard multi-agent model
 - Same as analysed in earlier presentations
- Apply efficiency concept to uncertainty
 - distinguish ex-ante and ex-post cases
The essential concepts

- **Social state**
 - describes economy completely
 - for example, an allocation

- **Pareto superiority**
 1. at least as much utility for all
 2. strictly greater utility for some

- **Pareto efficiency**
 - uses concept of Pareto superiority
 - also needs a definition of feasibility…
A definition of efficiency

- The basis for evaluating social states: \(v^h(\theta) \)

- A social state \(\theta \) is *Pareto superior* to state \(\theta' \) if:
 1. For all \(h \): \(v^h(\theta) \geq v^h(\theta') \)
 2. For some \(h \): \(v^h(\theta) > v^h(\theta') \)

- A social state \(\theta \) is *Pareto efficient* if:
 1. It is feasible
 2. No other feasible state is Pareto superior to \(\theta \)

The utility level enjoyed by person \(h \) under social state \(\theta \)

Note the similarity with the concept of blocking by a coalition

“Feasibility” could be determined in terms of the usual economic criteria
Derive the utility possibility set

- From the attainable set...
- ...take an allocation
- Evaluate utility for each agent
- Repeat to get utility possibility set

\[U_a = U^a(x_1^a, x_2^a) \]
\[U_b = U^b(x_1^b, x_2^b) \]
Utility possibility set – detail

- Utility levels of each person
- U-possibility derived from A
- Fix all but one at some utility level then max U of that person
- Repeat for other persons and U-levels to get PE points

- Efficient points on boundary of U
- Not all boundary points are efficient

Find the corresponding efficient allocation
Finding an efficient allocation (1)

- Use essentially the same method
- Do this for the case where
 - all goods are purely private
 - households 2, ..., n_h are on fixed utility levels ψ^h
- Then problem is to maximise $U^1(x^1)$ subject to:
 - $U^h(x^h) \geq \psi^h$, $h = 2, \ldots, n_h$
 - $\Phi^f(q^f) \leq 0$, $f = 1, \ldots, n_f$
 - $x_i \leq q_i + R_i$, $i = 1, \ldots, n$
- Use all this to form a Lagrangian in the usual way...
Finding an efficient allocation (2)

\[
\max \mathcal{L}([x], [q], \lambda, \mu, \kappa) := \\
U^1(x^1) + \sum_h \lambda_h [U^h(x^h) - \upsilon^h] \\
- \sum_f \mu_f \Phi^f(q^f) \\
+ \sum_i \kappa_i [q_i + R_i - x_i]
\]

where

\[x_i = \sum_h x_i^h\]
\[q_i = \sum_f q_i^f\]
FOCs

- Differentiate Lagrangian w.r.t. x_i^h. If x_i^h is positive at the optimum then:
 \[\lambda_h U_i^h(x^h) = \kappa_i \]
- Likewise for good j:
 \[\lambda_h U_j^h(x^h) = \kappa_j \]
- Differentiate Lagrangian w.r.t. q_i^f. If q_i^f is nonzero at the optimum then:
 \[\mu_f \Phi_i^f(q^f) = \kappa_i \]
- Likewise for good j:
 \[\mu_f \Phi_j^f(q^f) = \kappa_j \]
Interpreting the FOC

- From the FOCs for any household \(h \) and goods \(i \) and \(j \):

\[
\frac{U_i^h(x^h)}{U_j^h(x^h)} = \kappa_i \kappa_j
\]

for every household: MRS = shadow price ratio

- From the FOCs for any firm \(f \) and goods \(i \) and \(j \):

\[
\frac{\Phi_i^f(q^f)}{\Phi_j^f(q^f)} = \kappa_i \kappa_j
\]

for every firm: MRT = shadow price ratio
Efficiency in an Exchange Economy

- Alf’s indifference curves
- Bill’s indifference curves
- The contract curve

Set of efficient allocations is the contract curve
Includes cases where Alf or Bill is very poor

Allocations where $MRS_{12}^a = MRS_{12}^b$
Efficiency with production

- Household h's indifference curves
- h’s consumption in the efficient allocation
- MRS is the tangent
- Firm f’s technology set
- f’s net output in the efficient allocation

$MRS = MRT$ at efficient point
Overview

Relationship between competitive equilibrium and efficient allocations

- Pareto efficiency
- CE and PE
- Extending efficiency
Efficiency and equilibrium

- The Edgeworth Box diagrams are suggestive
- Points on the contract curve:
 - are efficient
 - could be CE allocations
- Examine connection of market with efficiency:
 - will the equilibrium be efficient?
 - can we use the market to implement any efficient outcome?
 - or are there cases where the market “fails”?
- Focus on two important theorems
Welfare theorem 1

- Assume a competitive equilibrium
- What is its efficiency property?

THEOREM: if all consumers are greedy and there are no externalities then a competitive equilibrium is efficient

Explanation:
- If they are not greedy, there may be no incentive to trade
- If there are externalities the market takes no account of spillovers
Welfare theorem 2

- Pick any Pareto-efficient allocation
- Can we find a property distribution d so that this allocation is a CE for d?

THEOREM: if, in addition to conditions for theorem 1, there are no non-convexities then an arbitrary PE allocation be supported by a competitive equilibrium

Explanation:
- If “lump sum” transfers are possible then we can arbitrarily change the initial property distribution
- If there are non-convexities the equilibrium price signals could take us away from the efficient allocation
Supporting a PE allocation

- The contract curve
- An efficient allocation
- Supporting price ratio = MRS
- The property distribution
- A lump-sum transfer

Allocations where \(MRS_{12}^a = MRS_{12}^b \)

Support allocation by a CE
- This needs adjustment of the initial endowment
- Lump-sum transfers may be tricky to implement
Individual household behaviour

- Household h's indifference curves
- h's consumption in the efficient allocation
- Supporting price ratio = MRS

- h's consumption in the allocation is utility-maximising for h
- h's consumption in the allocation is cost-minimising for h
Supporting a PE allocation (production)

- Firm f’s technology set
- f’s net output in the efficient allocation
- Supporting price ratio = MRT

- f’s net output in the allocation is profit-maximising for f

what if preferences and production possibilities were different?
Household \(h \) makes "wrong" choice

- Nonconvexity leads to "market failure".

- Suppose we want to allocate this consumption bundle to \(h \).

- Introduce prices

- \(h \)'s choice given this budget.

- Household \(h \)'s utility function violates second theorem.
Firm f makes “wrong” choice

- Firm f’s production function violates second theorem
- Suppose we want to allocate this net output to f
- Introduce prices
- f’s choice at those prices

Example of “market failure”
Firm f makes “wrong” choice (2)

- Firm f’s production function violates second theorem
- Suppose we want to allocate this net output to f
- Introduce prices
- f's choice at those prices

- A twist on the previous example
- Big fixed-cost component to producing good 1
- “market failure” once again
PE allocations – two issues

- Same production function
- Is PE at first red dot…?
- or at second red dot?
- Implicit prices for MRS=MRT
- Competitive outcome

- Issue 1 – what characterises the PE?
- Issue 2 – how to implement the PE
Competitive Failure and Efficiency

- The market “failures” raise two classes of problem that lead to two distinct types of analysis:
 - The characterisation problem
 - description of modified efficiency conditions
 - when conditions for the welfare theorems are not met
 - The implementation problem
 - design of a mechanism to achieve the allocation
- These two types of problem pervade modern micro economics
- Important to keep them distinct
Overview

Attempt to generalise the concept of Pareto superiority

Welfare: efficiency

Pareto efficiency

CE and PE

Extending efficiency
Why extend the efficiency concept?

- Pareto efficiency is indecisive
 - What about the infinity of PE allocations along the contract curve?
- Pareto improvements may be elusive
 - Beware the politician who insists that everybody can be made better off
- Other concepts may command support
 - “potential” efficiency
 - fairness
 - equity
Indecisiveness of PE

- Construct utility-possibility set as before
- Two efficient points
- Points superior to $\theta^°$
- Points superior to θ'

- Boundary points cannot be compared on efficiency grounds
- $\theta^°$ and θ' cannot be compared on efficiency grounds

A way forward?
“Potential” Pareto superiority

- Define θ to be potentially superior to θ' if:
 - there is a θ^* which is actually Pareto superior to θ'
 - θ^* is “accessible” from θ

- To make use of this concept we need to define accessibility

- This can be done using a tool that we already have from the theory of the consumer
The idea of accessibility

- Usually “θ* accessible from θ” means that income total in θ* is no greater than in θ
 - “if society can afford θ then it can certainly afford θ*”
- This can be interpreted as a “compensation rule”
 - the gainers in the move from θ' to θ…
 - …get enough to be able to compensate the losers of θ' → θ
- Can be expressed in terms of standard individual welfare criteria
 - the CV for each person
A result on potential superiority

- Use the terminology of individual welfare
- \(CV^h(\theta' \rightarrow \theta) \) is the monetary value the welfare change
 - for person \(h \)
 - given a change from state \(\theta' \) to state \(\theta \)
 - valued in terms of the prices at \(\theta \)
- \(CV^h > 0 \) means a welfare gain; \(CV^h < 0 \) a welfare loss

- **THEOREM**: a necessary and sufficient condition for \(\theta \) to be potentially superior to \(\theta' \) is
 \[
 \sum_h CV^h(\theta' \rightarrow \theta) > 0
 \]
- Can we really base welfare economics on the compensating variation?
Applying potential superiority

\[\theta^\circ \text{ is not superior to } \theta' \text{ and } \theta' \text{ is not superior to } \theta^\circ \]

\[\theta^* \text{ is superior to } \theta^\circ \]

\[\text{Points accessible from } \theta' \]

\[\text{There could be lots of points accessible by lump-sum transfers} \]

\[\theta' \text{ is potentially superior to } \theta^\circ \]
Problems with accessibility

- What prices should be used in the evaluation
 - those in θ°?
 - those in θ'?

- We speak only of potential income gains
 - compensation is not actually paid
 - does this matter?

- If no income transfer takes place:
 - so that there are no consumer responses to it
 - can we accurately evaluate gains and losses?

- But this isn’t the biggest problem…
Re-examine potential superiority

- The process from θ° to θ', as before
- The process in reverse from θ' to θ°
- Combine the two

- θ' is potentially superior to θ° and …
- θ° is potentially superior to θ'!
Extending efficiency: assessment

- The above is the basis of Cost-Benefit Analysis
- It relies on notion of “accessibility”
 - a curious concept involving notional transfers?
 - more than one possible definition
- “Compensation” is not actually paid
- If equilibrium prices differ substantially, the rule may produce contradictions
What next?

- Second approach to the question “how should the economy be run?”
 - The first was “the constitution”

- The approach covers widely used general principles

- Efficiency
 - neat and simple
 - but perhaps limited

- Potential efficiency
 - Persuasive but perhaps dangerous economics/politics

- A natural way forward:
 - Examine other general principles
 - Consider problems with applying the efficiency concept
 - Go to the third approach: a full welfare function