Distributional Analysis and Inequality

HMRC-HMT Economics of Taxation http://darp.lse.ac.uk/HMRC-HMT

Frank Cowell, 7 December 2015

2

Distributional analysis

- Covers a broad class of economic problems
 - inequality
 - social welfare
 - poverty
- Similar techniques
 - rankings
 - measures
- Four basic components need to be clarified
 - "income" concept...
 - "income receiving unit" concept
 - a distribution
 - method of assessment or comparison
- See <u>Cowell (2000, 2008, 2011, 2016</u>), Sen and Foster (1997)

Income distributions n = 2

Income distributions n = 3

5

A fundamental question

- What makes a "good" set of principles?
- There is no such thing as a "right" or "wrong" axiom.
- However axioms could be appropriate or inappropriate
 - Need some standard of "reasonableness"
 - For example, how do people view income distribution comparisons?
- Use a simple framework to list some of the basic axioms
 - Assume a fixed population of size *n*.
 - Assume that individual utility can be measured by *x*
 - Income normalised by equivalence scales
- Follow the approach of <u>Amiel-Cowell (1999)</u> Appendix A

Inequality axioms (1)

- **1** Anonymity. Suppose $\mathbf{x'}$ is a permutation of \mathbf{x} . Then: $I(\mathbf{x'}) = I(\mathbf{x})$
- **2** Population principle. $I(\mathbf{x}) \ge I(\mathbf{y}) \Longrightarrow I(\mathbf{x},\mathbf{x},...,\mathbf{x}) \ge I(\mathbf{y},\mathbf{y},...,\mathbf{y})$
- **3 Transfer principle.** (<u>Dalton 1920</u>) Suppose $x_i < x_j$ then, for small δ :

 $I(x_1, x_2, ..., x_i + \delta, ..., x_j - \delta, ..., x_n) < I(x_1, x_2, ..., x_i, ..., x_n)$

Income distributions *n* = 3 (close-up)

x and x' cannot be ranked

Two contour maps

Scale invariance

Inequality axioms (2)

• **4 Decomposability**. Suppose **x**' is formed by joining **x** with **z** and **y**' is formed by joining **y** with **z**. Then :

 $I(\mathbf{x}) \ge I(\mathbf{y}) \Longrightarrow I(\mathbf{x}') \ge I(\mathbf{y}')$

- **5 Scale invariance.** For $\lambda > 0$: $I(\mathbf{x}) \ge I(\mathbf{y}) \Rightarrow I(\lambda \mathbf{x}) \ge I(\lambda \mathbf{y})$
- **6 Translation invariance.** $I(\mathbf{x}) \ge I(\mathbf{y}) \Rightarrow I(\mathbf{x}+\mathbf{1}\delta) \ge I(\mathbf{y}+\mathbf{1}\delta)$
- Axioms 1-5 yield the Generalised Entropy class of indices

$$I_{\text{GE}}^{\alpha}(\mathbf{x}) = \frac{1}{\alpha^2 - \alpha} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{x_i}{\mu(\mathbf{x})} \right]^{\alpha} - 1 \right]$$

• Axioms 1-4 + 6 yield the Kolm class + variance

$$I_{\mathrm{K}}^{\beta}(\mathbf{x}) := \frac{1}{\beta} \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{\beta [x_i - \mu(\mathbf{x})]} \right)$$

Generalised Entropy measures

• Defines a *class* of inequality measures, given parameter α :

$$I_{\text{GE}}^{\alpha}(\mathbf{x}) = \frac{1}{\alpha^2 - \alpha} \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{x_i}{\mu(\mathbf{x})} \right]^{\alpha} - 1 \right]$$

- GE class is rich. Some important special cases
 - for $\alpha < 1$ it is ordinally equivalent to Atkinson ($\alpha = 1 \ -\epsilon$)
 - $\alpha = 0$: $I_{GE}^{0}(\mathbf{x}) := -\frac{1}{n} \sum_{i=1}^{n} \log(x_{i}/\mu(\mathbf{x}))$ (mean logarithmic deviation)
 - $\alpha = 1$: $I_{GE}^{1}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} [x_i/\mu(\mathbf{x})] \log(x_i/\mu(\mathbf{x}))$ (the Theil index)
 - or $\alpha = 2$ it is ordinally equivalent to (normalised) variance.
- Parameter α can be assigned any positive or negative value
 - indicates sensitivity of each member of the class
 - α large and positive gives a "top-sensitive" measure
 - α negative gives a "bottom-sensitive" measure
 - each α gives a specific distance concept

Generalised Entropy

Scale or translation independence?

Social-welfare functions

- A standard approach to a method of assessment
- Basic tool is a social welfare function (SWF)
 - Maps set of distributions into the real line $W = W(\mathbf{x})$
 - I.e. for each distribution we get one specific number
- Properties will depend on economic principles
- Simple example of a SWF: $W = \Sigma_t x_i$
- Principles on which SWF could be based?
 - use counterparts of inequality axioms
 - "reverse them" so welfare increases as inequality decreases
 - also...
- **Monotonicity.** $W(x_1, x_2, ..., x_i + \delta, ..., x_n) > W(x_1, x_2, ..., x_i, ..., x_n)$

Social welfare and income growth

Classes of SWFs

• Anonymity and population principle:

- can write SWF in either Irene-Janet form or *F* form
- may need to standardise for needs etc

• Introduce **decomposability**

- get class of Additive SWFs \mathfrak{W} :
- $W(\mathbf{x}) = \sum_{i} u(x_i)$
- or equivalently $W(F) = \int u(x) dF(x)$
- If we impose **monotonicity** we get
 - $\mathfrak{W}_1 \subset \mathfrak{W}: u(\bullet)$ increasing
- If we further impose the **transfer principle** we get
 - $\mathfrak{W}_2 \subset \mathfrak{W}_1$: $u(\bullet)$ increasing and concave

Evaluation functions *u*

20

SWF and inequality

- The Irene & Janet diagram
- A given distribution
- Distributions with same mean
- Contours of the SWF
- Construct an equal distribution with same social welfare
- Equally-Distributed Equivalent income

Social waste from inequality

- contour: x values such that
 W(x) = const
- Curvature of contour indicates society's willingness to tolerate "efficiency loss" in pursuit of greater equality

• Inequality
$$1 - \frac{\xi(\mathbf{x})}{\mu(\mathbf{x})}$$

An important family

- Take the W₂ subclass and impose scale invariance.
- Get the family of SWFs where *u* is iso-elastic:

$$u(x) = \frac{x^{1-\varepsilon} - 1}{1-\varepsilon}, \quad \varepsilon \ge 0$$

• has same form as CRRA utility function

Parameter ε captures society's inequality aversion.
Similar to individual risk aversion (<u>Atkinson 1970</u>)

$$\xi(\mathbf{x}) = \left[\frac{1}{n} \sum_{i=1}^{n} x_i^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}, \varepsilon > 0$$
$$I_{\mathrm{A}}^{\varepsilon}(\mathbf{x}) := 1 - \left[\frac{1}{n} \sum_{i=1}^{n} \left[\frac{x_i}{\mu(\mathbf{x})}\right]^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}$$

Isoelastic u for different values of ε

Overview...

Alternative approaches within Distributional Analysis Distributional analysis & inequality

Inequality basics

Social welfare

Ranking

Evidence

Ranking and dominance

- Introduce two simple concepts
 - first illustrate using the Irene-Janet representation
 - take income vectors **x** and **y** for a given *n*
- First-order dominance:
 - $y_{[1]} > x_{[1]}$, $y_{[2]} > x_{[2]}$, $y_{[3]} > x_{[3]}$
 - Each ordered income in **y** larger than that in **x**
- Second-order dominance:
 - $y_{[1]} > x_{[1]}$, $y_{[1]} + y_{[2]} > x_{[1]} + x_{[2]}$, $y_{[1]} + y_{[2]} + \dots + y_{[n]} > x_{[1]} + x_{[2]} \dots + x_{[n]}$
 - Each cumulated income sum in **y** larger than that in **x**
- Generalise this a little
 - represent distributions in *F*-form (anonymity, population principle)
 - *q*: population proportion ($0 \le q \le 1$)
 - F(x): proportion of population with incomes $\leq x$
 - $\mu(F)$: mean of distribution *F*

1st-Order approach

• Basic tool is the *quantile*, expressed as

 $Q(F; q) := \inf \{x \mid F(x) \ge q\} = x_q$

- "smallest income such that cumulative frequency is at least as great as q"
- Use this to derive a number of intuitive concepts
- Also to characterise the idea of 1st-order (quantile) dominance:
 - "G quantile-dominates F" means:
 - for every $q, Q(G;q) \ge Q(F;q)$,
 - for some q, Q(G;q) > Q(F;q)
- A fundamental result:
 - G quantile-dominates F iff W(G) > W(F) for all $W \in \mathfrak{W}_1$

Parade and 1st-order dominance

Q(.;q)G ****** q0

 Plot quantiles against proportion of population

Parade for distribution F again

Parade for distribution G

In this case *G* clearly quantile-dominates *F*But (as often happens) what if it doesn't?
Try second-order method

2nd-Order approach

• Basic tool is the *income cumulant*, expressed as

 $C(F; q) := \int \mathcal{Q}(F; q) x \, \mathrm{d}F(x)$

- "The sum of incomes in the Parade, up to and including position q"
- Use this to derive a number of intuitive concepts
 - the "shares" ranking, Gini coefficient
 - graph of *C* the *generalised Lorenz curve*
- Also to characterise the idea of 2nd-order (cumulant) dominance:
 - "G cumulant-dominates F" means:
 - for every q, $C(G;q) \ge C(F;q)$,
 - for some q, C(G;q) > C(F;q)
- A fundamental result (<u>Shorrocks 1983</u>):
 - G cumulant-dominates F iff W(G) > W(F) for all $W \in \mathfrak{W}_2$

GLC and 2nd-order dominance

2nd-Order approach (continued)

- The *share* of the proportion *q* of distribution *F* is $L(F;q) := C(F;q) / \mu(F)$
 - "income cumulation at q divided by total income"
- Yields Lorenz dominance, or the "shares" ranking:
 - "G Lorenz-dominates F" means:
 - for every q, $L(G;q) \ge L(F;q)$,
 - for some q, L(G;q) > L(F;q)
- Another fundamental result (<u>Atkinson 1970</u>):
 - For given μ , G Lorenz-dominates F iff W(G) > W(F) for all $W \in \mathfrak{W}_2$

Lorenz curve and ranking

Plot shares against proportion of population
Perfect equality
Lorenz curve for distribution F
Lorenz curve for distribution G

In this case *G* clearly Lorenzdominates *F*So *F* displays more inequality than *G*

But what if L-curves intersect?

 No clear statement about inequality (or welfare) is possible without further information

Overview	Distributional analysis & inequality
	Inequality basics
Attitudes and perceptions	Social welfare
	Ranking
	Evidence

Views on distributions

- Do people make distributional comparisons in the same way as economists?
- Summarised from <u>Amiel-Cowell (1999)</u>
 - examine proportion of responses in conformity with standard axioms
 - both directly in terms of inequality and in terms of social welfare

	Inequality		SWF	
	Num	Verbal	Num	Verbal
Anonymity	83%	72%	66%	54%
Population	58%	66%	66%	53%
Decomposability	57%	40%	58%	37%
Monotonicity	-	-	54%	55%
Transfers	35%	31%	47%	33%
Scale indep.	51%	47%	-	-

Inequality aversion

- Are people averse to inequality?
 - evidence of both inequality and risk aversion (<u>Carlsson et al 2005</u>)
 - risk-aversion as proxy for inequality aversion? (Cowell and Gardiner 2000)
- What value for ε?
 - affected by way the question is put? (Pirttilä and Uusitalo 2010)
 - high values of risk aversion from survey evidence **Barsky et al 1997**)
 - lower values of risk aversion from savings analysis (<u>Blundell et al 1994</u>)
 - from happiness studies 1.0 to 1.5 (Layard et al 2008)
 - related to the extent of inequality in the country? (<u>Lambert et al 2003</u>)
 - perhaps a value of around 0.7 2 is reasonable (<u>HM Treasury 2011</u> pp 93-94)

Conclusion

- Axiomatisation of inequality or welfare can be accomplished using just a few basic principles
- Ranking criteria can provide broad judgments
- But may be indecisive, so specific SWFs could be used
 - What shape should they have?
 - How do we specify them empirically?
- Several axioms survive scrutiny in experiment
 - but Transfer Principle often rejected

References (1)

- Amiel, Y. and Cowell, F.A. (1999) Thinking about Inequality, Cambridge University Press
- <u>Atkinson, A. B. (1970)</u> "On the Measurement of Inequality," *Journal of Economic Theory*, **2**, 244-263
- <u>Barsky, R. B., Juster, F. T., Kimball, M. S. and Shapiro, M. D. (1997)</u> "Preference parameters and behavioral heterogeneity: An Experimental Approach in the Health and Retirement Survey," *Quarterly Journal of Economics*, **112**, 537-579
- <u>Blundell, R., Browning, M. and Meghir, C. (1994)</u> "Consumer Demand and the Life-Cycle Allocation of Household Expenditures," *Review of Economic Studies*, **61**, 57-80
- <u>Carlsson, F., Daruvala, D. and Johansson-Stenman, O. (2005)</u> "Are people inequality averse or just risk averse?" *Economica*, **72**,
- <u>Cowell, F. A. (2000)</u> "Measurement of Inequality," in Atkinson, A. B. and Bourguignon, F. (eds) *Handbook of Income Distribution*, North Holland, Amsterdam, Chapter 2, 87-166
- <u>* Cowell, F.A. (2008)</u> "Inequality: measurement," *The New Palgrave*, second edition
- <u>* Cowell, F.A. (2011)</u> Measuring Inequality, Oxford University Press
- <u>Cowell, F.A. (2016)</u> "Inequality and Poverty Measures", in *Oxford Handbook of Well-Being And Public Policy*, edited by Matthew D. Adler and Marc Fleurbaey
- <u>Cowell, F.A. and Gardiner, K.A. (2000)</u> "Welfare Weights", OFT Economic Research Paper 202, Office of Fair Training, Salisbury Square, London

References (2)

- <u>Dalton, H. (1920)</u> "Measurement of the inequality of incomes," *The Economic Journal*, **30**, 348-361
- <u>HM Treasury (2011)</u> *The Green Book: Appraisal and Evaluation in Central Government* (and <u>Technical Annex</u>), TSO, London
- <u>Lambert, P. J., Millimet, D. L.</u> and Slottje, D. J. (2003) "Inequality aversion and the natural rate of subjective inequality," *Journal of Public Economics*, **87**, 1061-1090.
- Layard, P. R. G., Mayraz, G. and Nickell S. J. (2008) "The marginal utility of income," *Journal of Public Economics*, 92, 1846-1857.
- Pen, J. (1971) Income Distribution, Allen Lane, The Penguin Press, London
- <u>Pirttilä, J. and Uusitalo, R. (2010)</u> "A 'Leaky Bucket' in the Real World: Estimating Inequality Aversion using Survey Data," *Economica*, **77**, 60–76
- Sen, A. K. and Foster, J. E. (1997) *On Economic Inequality* (Second ed.). Oxford: Clarendon Press.
- Shorrocks, A. F. (1983) "Ranking Income Distributions," *Economica*, **50**, 3-17