Topic 1: Policy Design: Unemployment Insurance and Moral Hazard

Johannes Spinnewijn

London School of Economics

Lecture Notes for Ec426
Topics & Question in Public Economics

- Classical division in Public Economics:
 - Taxation: How does and should government raise revenues?
 - Spending: How does and should government spend revenues?

- Same fundamental questions for both topics:
 - When and how should the government intervene?
 - How do government policies affect economic behavior?
Focus on Social Insurance

- Definition of Social Insurance?
 - Social Insurance = government transfers based on events which cause a loss of income
 - Examples are unemployment, disability, health, retirement, ...
 - Welfare = means-tested transfers such as poverty alleviation, housing benefits.

- SI is the biggest and most rapidly growing part of Government Expenditures
 - GE have increased as a percentage of national income throughout the 20th century. Now close to 50 percent of national income in OECD countries.
 - GE have shifted towards social security and health insurance in particular
 - expected increase in GE causes worries about future solvability

- Generosity of SI (i.e. replacement of lost income) differs significantly among countries.
Distribution of UK Government Spending

Figure: Source: IFS 2008-2009.

- Up-to-date rule-of-thumb: 20% on Pensions, 20% on Health, 20% on Welfare, 15% on Education
Social Security Spending as a Share of National Income, 1949 to 2011

NHS Spending as a Share of National Income, 1949 to 2011

Change in Distribution of US Gov. spending, 1960 vs. 2014

Source: Gruber’s Textbook
International Comparison of Social Expenditures
Share of GDP, 2007 vs. peak vs. 2014

Source: OECD
Why have social insurance?

- General motivation for insurance: pool risks of \textit{risk-averse} individuals
 - Unemployment: loss of earnings due to involuntary unemployment
 - Health: risk of health shocks/expenses
 - Social security: loss of earnings at old age

- But why is \textbf{government} intervention needed to provide this insurance?
 - First and Second Welfare Theorem optimal insurance allocation could be decentralized
 - So why care about individuals not having health insurance in the US?
Why have social insurance?

- Typical answer is market failure due to asymmetric information
 - private information about actions leads to moral hazard; increase in coverage increases the probability that the risk occurs
 - private information about risks leads to adverse selection; higher risk types are more likely to buy insurance

- Does this provide a rational for government intervention?
 - in case of adverse selection it does; government has advantage over private insurers that it can mandate insurance
 - if governments intervene for other reasons, understanding how interventions affect selection and incentives is essential for optimal design
What else can explain government interventions?

- Other Market Failures
 - externalities, aggregate risks, redistribution, imperfect competition,...

- Behavioral failures
 - people make mistakes, do not internalize the true impact of their actions on themselves

- Trade-off between costs and benefits of government intervention
 1. information: how does government aggregate information on preferences and technology to choose optimal production and allocation?
 2. politicians not necessarily a benevolent planner in reality; face incentive constraints themselves
 3. why does govt. know better what’s desirable for you (e.g. wearing a seatbelt, not smoking, saving more)
Outline

Lecture 1-2 Unemployment Insurance & Moral Hazard

Lecture 2-3 Health Insurance & Adverse Selection

Lecture 4 Social Security

Lecture 5 Education

Lecture 6 Externalities

Lecture 7 Behavioural Public Economics
Approach

- Integration of theory with empirical evidence to derive quantitative predictions about policy
 - theoretical analysis of core issues
 - empirical analysis of direct and indirect effects
 - institutional framework (incomplete)

- Behavioral public economics: focus on non-standard decision makers where relevant

- Critical about question; why government?
Logistics

- Slides and reading list posted in advance on Frank’s website

- Background textbooks:
 - Public Finance and Public Policy by Gruber
 - Handbook of Public Economics (recent Vol. 5 in particular)

- Contact:
 - Email: j.spinnewijn@lse.ac.uk
 - Office hours: Tuesday 4 - 5 (32LIF 3.24)
This Lecture: UI & Moral Hazard

1. Moral Hazard: Insurance vs. Incentives
2. Optimal level of UI benefits [Baily-Chetty model]
 1. Model of Moral Hazard - generalizes for other applications
 2. Sufficient Statistics Approach - use of envelope conditions
3. Empirical estimation to test for optimality of program
Unemployment Insurance: Basic Trade-off

- Insurance against unemployment
 - loss of current (and potentially future) earnings
 - uninsured unemployed experience drop in consumption

- If fully insured, unemployed has no (monetary) incentive to keep/get a job
 - moral hazard on the job and during unemployment

- Central trade-off: insurance vs. incentives \(\Rightarrow\) optimal generosity
Static Generosity: Replacement Rate

- Common measure of program’s size is its “replacement rate”

\[r = \frac{(\text{net}) \text{ benefit}}{(\text{net}) \text{ wage}} \]

- UI reduces agents’ effective wage rate to \(w(1 - r) \)

- Typical profile:

![Unemployment Benefits in Michigan, 2005](image)
Dynamic Generosity: Duration of Eligibility

Net Replacement Rates Over a Five-Year Period
For a One-Earner Couple With Two Children

Source: Gruber's book
Baily-Chetty model

- Canonical analysis of optimal level of UI benefits: Baily (1978)

- Shows that the optimal benefit level can be expressed as a function of a small set of parameters in a static model

- Once viewed as being of limited practical relevance because of strong assumptions

- Chetty (2006) shows formula actually applies with arbitrary choice variables and constraints

- Parameters identified by Baily are “sufficient statistics” for welfare analysis ⇒ robust yet simple guide for optimal policy
Baily-Chetty model: Setup

- Static model with two states: an agent is either
 - employed and earns wage \(w \)
 - or unemployed and has no income

- Agent is initially unemployed. Controls probability of remaining unemployed by exerting search effort

- If the agent searches at cost \(e \), the probability of finding a job equals \(\pi (e) \) with \(\pi' > 0, \pi'' < 0 \)
Baily-Chetty model: Setup

- UI system that pays constant benefit b to unemployed agents
- Benefits financed by lump sum tax τ paid by the employed agents
- Govt’s balanced budget constraint:
 \[\pi(e) \cdot \tau - (1 - \pi(e)) \cdot b = 0 \]
- Agent’s expected utility, with $u(c)$ utility over consumption, is:
 \[\pi(e) u(w - \tau) + (1 - \pi(e)) u(b) - e \]
Baily-Chetty model: First Best Solution

- In first best, there is no moral hazard problem

- Government chooses b and e (determining τ) to maximize agent’s welfare:

$$\max_{b,e} \pi(e) u \left(w - \frac{1 - \pi(e)}{\pi(e)} b \right) + (1 - \pi(e)) u(b) - e$$

- Solution to this problem is

$$FOC_b : \quad u'(c_e) = u'(c_u) \implies \text{full insurance}$$
$$FOC_e : \quad \pi'(e) [u(c_e) - u(c_u)] - 1 + \frac{\pi'(e)}{\pi(e)} bu'(c_e) = 0$$
Baily-Chetty model: Second Best Solution

- In second best, effort is unobserved by govt. ⇒ moral hazard

- Problem: agents only consider *private* marginal benefits and cost when choosing e

 - agent does not internalize the effect on the govt's budget constraint

$$
e^I (b, \tau) : \quad \pi' (e) [u(c_e) - u(c_u)] - 1 = 0
$$

$$
e^S (b, \tau) : \quad \pi' (e) [u(c_e) - u(c_u)] - 1 + \frac{\pi'(e)}{\pi(e)} bu'(c_e) = 0
$$

- hence, agent searches too little from a social perspective ⇒ source of inefficiency
Baily-Chetty model: Second Best Solution

- Government’s problem is to maximize agent’s expected utility, taking into account agent’s behavioral responses:

\[
\max_{b,\tau,e} \pi(e)u(w-\tau) + (1-\pi(e))u(b) - e
\]

such that

\[
BC : \quad \pi(e)\tau - (1-\pi(e))b = 0
\]
\[
IC : \quad \pi'(e)\left[u(w-\tau) - u(b)\right] - 1 = 0
\]

- Denote by \(e(b)\) and \(\tau(b)\), the functions satisfying \(BC\) and \(IC\)

- The (unconstrained) problem of the government is

\[
\max_b V(b) = \pi(e(b))u(w-\tau(b)) + (1-\pi(e(b)))u(b) - e(b)
\]
Two Approaches to Optimal Policy Problems

Focus in public finance is on deriving an *empirically implementable* solution to this problem:

1. **Structural**: specify complete models of economic behavior and estimate the primitives
 - identify b^* as a fn. of deep parameters: returns and cost of job search, discount rates, nature of borrowing constraints, informal ins. arrangements.
 - challenge: difficult to identify all primitive parameters in an empirically compelling manner

2. **Sufficient Statistics**: derive formulas for b^* as a fn. of high-level elasticities
 - these elasticities can be estimated using *reduced-form* methods
 - estimate statistical relationships using research designs that exploit quasi-experimental exogenous variation.
 - Baily-Chetty model is an example of this approach
Baily-Chetty model: Second Best Solution

At an interior optimum, \(\frac{dV}{db}(b^*) = 0 \)

\[
\Leftrightarrow (1 - \pi(e))u'(b) - \pi(e)u'(w - \tau)\frac{d\tau}{db} + \{\pi'(e)[u(w - \tau) - u(b)] - 1\}\frac{de}{db} = 0
\]

Since the expected utility has been optimized over \(e \), the Envelope Thm implies:

\[
(1 - \pi(e))u'(c_u) - \pi(e)u'(c_e)\frac{d\tau}{db} = 0
\]

Key here is that we can neglect the \(\frac{de}{db} \) term

- given the agent’s optimization, the impact on expected utility through effort is of second order
- this holds for any optimal behavior by the agent, e.g. endogenous consumption (Chetty 2006)
Baily-Chetty model: Second Best Solution

- The change in effort does have a first order effect on the government’s UI budget

- With $\tau(b) = \frac{(1-\pi(e(b)))}{\pi(e(b))} b$, we find

$$\frac{d\tau}{db} = \frac{1 - \pi(e)}{\pi(e)} - \frac{\pi'(e)}{\pi(e)^2} \frac{de}{db} b$$

$$= \frac{1 - \pi(e)}{\pi(e)} \left(1 + \frac{\varepsilon_{1-\pi(e),b}}{\pi(e)} \right)$$

$$\Rightarrow$$

$$\frac{dV(b)}{db} = (1 - \pi(e)) \left\{ u'(c_u) - (1 + \frac{\varepsilon_{1-\pi(e),b}}{\pi(e)}) u'(c_e) \right\}$$
Baily-Chetty model: Second Best Solution

- This yields the optimality condition

\[
\frac{u'(c_u) - u'(c_e)}{u'(c_e)} = \frac{\varepsilon_1 - \pi(e)b}{\pi(e)}
\]

- LHS is marginal social benefit of UI
 - benefit of transferring $1 from high to low state due to increased insurance
 - \(MB \) is decreasing in insurance coverage

- RHS is marginal social cost of UI
 - cost of transferring $1 due to decreased search effort
 - \(MC \) is constant (or decreasing less) with insurance coverage

- Comparative statics; ceteris paribus,
 - if \(MC \) is higher, optimal UI benefits should be lower
 - if \(MB \) is higher, optimal UI benefits should be higher
Implementation: Consumption-Based Formula

- Can we identify sufficient statistics to test for the optimality of the current system?

- Write marginal utility gap using a Taylor expansion:
 \[u'(c_u) - u'(c_e) \approx u''(c_e)(c_u - c_e) \]

- Defining coefficient of relative risk aversion \(\gamma = \frac{-u''(c)c}{u'(c)} \), we can write
 \[
 \frac{u'(c_u) - u'(c_e)}{u'(c_e)} \approx -\frac{u''}{u'} c_e \frac{\Delta c}{c} \\
 = \gamma \frac{\Delta c}{c}
 \]

- Gap in marginal utilities is a function of curvature of utility (risk aversion) and consumption drop from high to low states.
Implementation: Consumption-Based Formula

Theorem

The optimal unemployment benefit level b^* satisfies

$$\gamma \frac{\Delta c}{c} (b^*) \approx \frac{\varepsilon_{1-\pi(e),b}}{\pi(e)}$$

where

$$\Delta c = \frac{c_e - c_u}{c_e} = \text{consumption drop during unemployment}$$

$$\gamma = -\frac{u''(c_e)}{u'(c_e)}c_e = \text{coefficient of relative risk aversion}$$

$$\varepsilon = \frac{d \log 1 - \pi(e)}{d \log b} = \text{unemployment elasticity}$$
Estimating the Moral Hazard Cost

- Lots of empirical work on labor supply effect of social insurance. Overview by Krueger and Meyer (2002)

- Early literature used cross-sectional variation in replacement rates. Problem: this implies a comparison of high and low wage earners, whose employment prospects may be very different!

- This gave way in late 80s/early 90s to modern methods using more exogenous variation/quasi-experiments
 - difference in UI generosity across states, across time, across group...
 - state experiments with UI bonuses (Meyer 1995)

- Evidence suggests elasticity of around 0.5.
Difference-in-Differences Estimates

- Compare a group affected by a change in the unemployment policy (T) to a group for which the unemployment policy is unchanged (C). Let B and A denote before and after the reform.

- The effect on the exit probability can be estimated by the difference-in-differences

$$
\Delta \pi^T - \Delta \pi^C = \left[\pi_A^T - \pi_B^T \right] - \left[\pi_A^C - \pi_B^C \right].
$$

- before-after estimator $\left[\pi_A^T - \pi_B^T \right]$ is biased by time effects
- a group comparison $\left[\pi_A^T - \pi_A^C \right]$ is biased by group effects

- The dif-in-dif removes (group-invariant) time effects and (time-invariant) group effects. The identification assumption is that groups follow parallel trends over time, absent the policy change.
“Spike” in hazard rate

- Most striking evidence for moral hazard effect of unemployment insurance: “spike” in hazard rate at benefit exhaustion.

Source: Schmieder et al. QJE 2011
Estimating the Consumption Smoothing Benefits

- The smoothing benefits can be estimated as well, but we should take into account that UI crowds out self-insurance
 - some people use their savings when unemployed
 - some people borrow from banks of family

\[
\begin{align*}
 c_u &= b + \text{savings} \\
 c_e &= w - \tau - \text{savings}
\end{align*}
\]

- however, many unemployed have no savings and face borrowing constraints

- Gruber analyzes drop in food consumption \(\frac{c_e - c_u}{c_e} \) and estimates how this is affected by a change in the benefit ratio \(\frac{b}{w} \).
Simulated Instruments

- Same problem: the difference in consumption drop for individuals with high and low replacement rates is not only due to the replacement rate differential.

- Alternative solution: Simulated Instruments
 - take a representative subsample of individuals S_{sub}
 - for each individual i in state j at year t in the original sample
 - calculate the subsample’s average replacement rate if all individuals of the subsample had lived in state j at year t

 $\left(\frac{b}{w} \right)_{j,t}^{\text{simulated}} = \sum_{s \in S_{sub}} \frac{b_{s,j,t}^{\text{simulated}}}{w_s}$

 - use $\left(\frac{b}{w} \right)_{j,t}^{\text{simulated}}$ as an instrument for $\left(\frac{b}{w} \right)_{i,j,t}$

- The approach exploits only variation in the generosity of the state UI system over time (\sim difference-in-difference). Underlying the identification is a similar parallel-trends assumption.
Estimating the Insurance Value

- Gruber runs IV regression

\[
\left(\frac{c_e - c_u}{c_e} \right)_{i,j,t} = \beta_1 + \beta_2 \left(\frac{b}{w} \right)_{i,j,t} + \beta_3 \delta_j + \beta_4 \tau_t + \epsilon_i
\]

and finds:

- \(\beta_1 = 0.24, \beta_2 = -0.28 \)
- without UI, cons drop would be about 24%
- a 10 pp increase in UI replacement rate causes 2.8 pp reduction in cons. drop.
- with current replacement rate \((b/w = 0.5)\), cons drop is about 10%

- Is current level optimal?

\[\gamma \times 10\% \overset{?}{=} 0.5 \]
Calibrating the Model

• We can find the optimal level using our estimates

\[\frac{\Delta c}{c} \approx \frac{\varepsilon}{\pi} \]

\[\gamma \left(\beta_1 + \beta_2 \frac{b^*}{w} \right) \approx \varepsilon \]

• Results: \(\frac{b^*}{w} \) varies considerably with \(\gamma \)

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{b^*}{w})</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0.41</td>
<td>0.50</td>
<td>0.68</td>
</tr>
</tbody>
</table>

• Consumption smoothing benefits seem small relative to the moral hazard cost of unemployment insurance?
Summary

- Policy maker faces trade-off between the provision of insurance and the provision of incentives.

- Simple model with search efforts can capture this trade-off. Model generalizes for other behavioral responses like saving, moral hazard on the job, quality of job matches,...

 - if behavior is optimal, change in behavior has second-order effect on welfare
 - only the effect on the government’s budget constraint is important and this is captured by the unemployment probability

- Empirical evidence suggests that job seekers are quite responsive to monetary incentives, implying that consumption benefits need to be large to justify generous unemployment benefits