Design: Public Goods

Frank Cowell

EC426

http://darp.lse.ac.uk/ec426

5 October 2015
Outline

Design
 Fundamentals
 Result

Public Goods
 Characterisation
 Public Goods: voluntarism

PG Mechanisms
 PG: Restricted problem
 Second-best schemes

Conclusions
An approach to design

- Start from same point as in Lecture 1
- Arrow (1951) insight is fundamental to Public Economics
 - helps understand concepts of social welfare (Lecture 1)
 - but also connects to an “information+incentives” problem

- Why can’t the government just do what it likes?
 - maybe exogenous constraints
 - more basic: the problem of “manipulability”

- Begin by making this idea more rigorous
 - connect back to the SWF approach

- Then formalise this in a typical PE application
 - game theoretic approach
 - incomplete information
 - hidden characteristics
Social welfare and individual values

- **A social state**: $\theta \in \Theta$
- Individual i’s evaluation of the state $v_i(\theta), i = 1, ..., n$
 - v_i: member of some general class U
 - U: evaluation or utility functions $\Theta \rightarrow \mathbb{R}$

- **A profile**: $[v_1, \ldots, v_i, \ldots v_n]$
 - ordered list of functions v_i
 - set of all profiles: V

- **SWF problem**: find a constitution $\Sigma : V \rightarrow U$ satisfying
 - Unrestricted domain
 - Pareto unanimity
 - Independence of Irrelevant Alternatives

- **IF U,P, I hold then \Sigma must be dictatorial** (Arrow 1951)
 - except where there are fewer than three social states
 - “dictator” i^*: if $v_{i^*}(\theta) > v_{i^*}(\theta')$ then society prefers θ to θ'
Social choice and manipulation

- Use the same framework as previous slide
 - *social state*: $\theta \in \Theta$
 - individual preferences $v_i(\cdot) \in U, i = 1, \ldots, n$
 - profile: $[v_1, \ldots, v_i, \ldots v_n] \in V$

- A *social choice function* $\Gamma : V \rightarrow \Theta$
 - compare this with the constitution Σ
 - same domain, but different kind of “output”

- Does an individual i have power in the SCF?
 - if all tell the truth about preferences: $\theta = \Gamma(v_1, \ldots, v_i, \ldots v_n)$
 - if i misrepresents preferences: $\hat{\theta} = \Gamma(v_1, \ldots, \hat{v}_i, \ldots v_n)$

- This reveals a fundamental problem
 - if $v_i(\hat{\theta}) > v_i(\theta)$ then there is an incentive to misrepresent
 - the social-choice function Γ is *manipulable*
Implementation

• Is the SCF Γ consistent with private economic behaviour?
 • yes if the θ picked out by Γ is also the equilibrium of an appropriate economic game

• A mechanism is a partially specified game:
 • rules of game are fixed
 • strategy sets are specified
 • preferences not yet specified

• Plug preferences into the mechanism:
 • does the mechanism have an equilibrium?
 • does the equilibrium correspond to the desired θ?
 • if so, θ is implementable

• Wide range of possible and interesting mechanisms
 • Example: the market as a mechanism
 • Implementation problem: find/design an appropriate mechanism
Design result

- Result on the SCF, Γ (Gibbard 1973, Satterthwaite 1975, Ninjbat 2012)

 If the set of social states Θ contains at least three elements; and Γ is defined for all logically possible preference profiles and Γ is truthfully implementable in dominant strategies, then Γ must be dictatorial

- Closely related to the Arrow theorem

- Has profound implications for public economics
 - misinformation may be endemic to the design problem
 - may only get truth-telling mechanisms in special cases

- Interested in two types of solution:
 1. “Full information” (“first best”) solutions
 - needs an information-revealing mechanism
 2. Second-best solutions
 - built-in constraints to prevent misrepresentation
Typology of goods

<table>
<thead>
<tr>
<th>Excludable</th>
<th>Rival</th>
<th>Non-rival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure private</td>
<td></td>
<td>Pure public</td>
</tr>
<tr>
<td>Non-excludable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Excludable**: is there a way of making people pay for the good?
- **Rival / nonrival**: need extra resources to supply an extra person?
 - For a private good, aggregate consumption is found by summing the consumption of n individuals.
 - For a public good, aggregate consumption equals the consumption of each of the n individuals.
Efficiency: model

- Let \(x_i \) be vector of goods consumed by person \(i \), \(x \) is aggregate vector of goods
- Consumer \(i \) has utility function \(u_i \)
- To find an efficient allocation:
 - max utility of any one person \(i \)
 - keeping the \(n - 1 \) others on a fixed utility level \(u_\ell(x_\ell) = v_\ell \)
 - satisfying production constraint \(\Phi(x) = 0 \)
- Lagrangean is \(u_i(x_i) + \sum_{\ell \neq i} \lambda_\ell [u_\ell(x_\ell) - v_\ell] - \mu \Phi(x) \)
- For a private good \(j \) consumed by person \(i \) we have the FOC
 \[\lambda_i \frac{\partial u_i(x_i)}{\partial x_{ij}} = \mu \frac{\partial \Phi(x)}{\partial x_j} \]
- Public good \(j = 1 \) consumed by everyone equally. The FOC:
 \[\sum_{\ell=1}^{n} \lambda_\ell \frac{\partial u_\ell(x_\ell)}{\partial x_{\ell1}} = \mu \frac{\partial \Phi(x)}{\partial x_1} \]
Efficiency: result

- Use FOC for a max to characterise efficiency conditions:
 - If goods j and k are both private
 \[
 \frac{\partial u_i(x_i)}{\partial x_{ik}} \bigg/ \frac{\partial u_i(x_i)}{\partial x_{ij}} = \frac{\partial \Phi(x)}{\partial x_k} \bigg/ \frac{\partial \Phi(x)}{\partial x_j}
 \]
 for every agent i: $\text{MRS}_i = \text{MRT}$
 - If good j is private and good 1 is public
 \[
 \sum_{i=1}^{n} \frac{\partial u_i(x_i)}{\partial x_{i1}} \bigg/ \frac{\partial u_i(x_i)}{\partial x_{ij}} = \frac{\partial \Phi(x)}{\partial x_1} \bigg/ \frac{\partial \Phi(x)}{\partial x_j}
 \]
 \[
 \sum_{i=1}^{n} \text{MRS}_i = \text{MRT}
 \]
Efficiency conditions

- Derived from the FOCs
- If “wrong condition” applied to PGs – get under-provision
Strategic view

- Consider two types of Public-good game. In each case:
 - players (Greek, Roman)
 - actions ([+], [−]): (contribute, not-contribute) to public good
 - payoffs denoted by letters for each player

Game 1

<table>
<thead>
<tr>
<th></th>
<th>Roman [+]</th>
<th>Roman [−]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek [+]</td>
<td>β, B</td>
<td>δ, A</td>
</tr>
<tr>
<td>Greek [−]</td>
<td>α, D</td>
<td>γ, C</td>
</tr>
</tbody>
</table>

- Three efficient outcomes
- But none of these is a NE

Game 2

<table>
<thead>
<tr>
<th></th>
<th>Roman [+]</th>
<th>Roman [−]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek [+]</td>
<td>β, B</td>
<td>γ, A</td>
</tr>
<tr>
<td>Greek [−]</td>
<td>α, C</td>
<td>δ, D</td>
</tr>
</tbody>
</table>

- Three efficient outcomes
- Maybe implementable?
Voluntary provision

- Two-good model: i’s utility is $\psi(g) + x_i$

- i is endowed with income y_i, contributes an amount z_i
 - so private consumption is $x_i = y_i - z_i$

- g produced from total contributions $g = \phi(z)$, $z := \sum_{\ell=1}^{n} z_\ell$

- Suppose every agent i makes a Cournot assumption:
 - assumes that $\sum_{\ell=1}^{n} z_\ell - z_i$ is a constant, \bar{z}_i
 - perceives problem as “choose z_i to max $\psi(\phi(\bar{z}_i + z_i)) + y_i - z_i$”

- FOC for perceived problem is $\psi'(g) \phi'(z) - 1 = 0$
- So we get $\psi'(g) = \frac{1}{\phi'(z)}$; in other words $MRS_i = MRT$

- But for efficiency we need $\sum_{i=1}^{n} MRS_i = MRT$
Each party makes Cournot assumption

- Nash equilibrium is at intersection of the reaction functions
- Efficient outcomes given by locus of common tangencies
Willingness To Pay and the Public Good

- p_i reflects person i’s Willingness To Pay: $\text{MRS}_i = \text{WTP}_i$
- Sum of WTP equal MC of producing public good g^*
Lindahl

- Introduce concept of “tax price” for funding public goods
- p_i: “tax price” for i of PG, set by government (Lindahl 1919)
- These “prices” must satisfy $p_i = WTP_i$ and $\sum_{i=1}^{n} p_i = MRT$

- What if i realises that “price” depends on announced WTP?
- WTP announced strategically: i announces \hat{WTP}_i knowing that
 - $p_i = \hat{WTP}_i$
 - amount of public good is $g = \phi (\text{const} + p_i g)$
 - private consumption is $x_i = y_i - p_i g$

- Suppose i announces \hat{WTP}_i to maximise utility $\psi(g) + x_i$
 - then this becomes exactly the problem of voluntary contribution!
Way forward

• Lindahl results in the same suboptimal outcome as voluntarism

• What can be done?
 • public provision through regular taxation
 • change the problem
 • change perception of the problem

• Alternatives to elementary model of individual rationality:
 • truthful revelation as a social norm (Johansen 1977)
 • reciprocity motives in the utility function (Guttman 1987)
 • co-operative outcome in a repeated game (Pecorino 1999)

• More promising: alternative institutional mechanisms
 • Pivot mechanisms in a restricted choice problem
 • “Forced” reciprocity
 • Provision-point mechanisms
 • Lotteries
A binary project

- An all-or-nothing choice (Clarke 1971, Groves and Ledyard 1977)

- $\Theta = \{0, 1\}$. A project in Θ completely characterised by
 - each person i’s endowment y_i of private good
 - payment z_i by i if project goes ahead ($\sum_i z_i = z, \phi(z) = 1$)
 - a system of penalties

- All have zero income effect (ziff) utility: $\tau_i \psi(g) + x_i$
 - where ψ is increasing, concave, τ_i is a taste parameter
 - τ_i reflects Willingness To Pay
Preferences for a binary project

\[v_1(\theta^\circ) > v_1(\theta'); \quad v_2(\theta^\circ) < v_2(\theta') \]
A criterion for the project

- Let CV_i be compensating variation for i if project goes ahead
- If $S := \sum_{\ell=1}^{n} CV_\ell$ then appropriate criterion seems to be $S > 0$
 - gainers could compensate losers
 - but S is unobservable (information on preferences is private)
- So, use instead the announced CV, \hat{CV}_i, and define
 \[\hat{S} := \sum_{\ell=1}^{n} \hat{CV}_\ell, \quad \hat{S}_i := \hat{S} - \hat{CV}_i, i = 1, \ldots, n \]
- If \hat{S} and \hat{S}_i have opposite signs then person i is *pivotal*
- Now consider the following criterion
 1. Approve (reject) the project if $\hat{S} \geq 0$ ($\hat{S} < 0$)
 2. If i is pivotal, then impose a penalty of \hat{S}_i on person i
- Mechanism guarantees that truth-telling is a dominant strategy
Payoff to i under the mechanism

$$
\begin{array}{cc}
\hat{S} < 0 & \hat{S} \geq 0 \\
(\theta^\circ \text{ chosen}) & (\theta' \text{ chosen}) \\
\hat{S} - i < 0 & v_i(\theta^\circ) \\
\hat{S} - i \geq 0 & v_i(\theta') - \hat{S} - i \\
\end{array}
$$

- Person i's true valuations are $v_i(\theta^\circ), v_i(\theta')$
- Person i announces $\hat{v}_i(\theta^\circ), \hat{v}_i(\theta')$
- Limitations:
 - the amounts $\hat{S} - i$ have to be computed for all n persons
 - mechanism applies only to binary projects
A binary choice

- Tax/subsidy to persuade people to reciprocate? (Gradstein 1998)

- All have same ziff utility, endowed with 1 unit of private good
 - i’s contribution choice is represented as $z_i \in \{0, 1\}$
 - i has unobservable cost of contribution c_i
 - Utility: $\psi(g) + 1 - z_i c_i$

- Public good production: $g = \phi(q)$
 - where q is proportion of contributors

- For an efficient outcome want low-cost agents to contribute
 - for some cut-off value \bar{c},

 $$z_i = \begin{cases}
 1 & \text{if } c_i \leq \bar{c}, \\
 0 & \text{otherwise}
 \end{cases}$$

- If provision is left to private action there will be underprovision
Binary choice: tax/subsidy

- Government knows the distribution $F(\cdot)$ of contribution costs
 - can condition on the threshold value \bar{c}

- Design tax/subsidy scheme based on observables:
 - subsidy $s > 0$ if you contribute
 - tax $t > 0$ if you don’t contribute

- Person with critical cost \bar{c} gets utility:
 - $\psi(g) + 1 - \bar{c} + s = \psi(g) + 1 - t$
 - implies $s + t = \bar{c}$

- Those with costs $c_i < \bar{c}$ will contribute; those with $c_i > \bar{c}$ will not
- Breakeven achieved if $sF(\bar{c}) = t[1 - F(\bar{c})]$
 - the necessary tax to achieve this is $t = \bar{c}F(\bar{c})$
Provision-point mechanism

- Voluntary contribution *plus* target value z^* *plus* refund scheme
 - target z^* exceeded: a rebate in proportion to your contribution
 - if z^* is not reached, all contributions refunded

- If total contributions are \bar{z} and agent i’s share is π_i, utility is

$$\psi(\phi(z^*)) + \pi_i [\bar{z} - z^*] + y_i - z_i, \quad \text{if } \bar{z} \geq z^*$$
$$y_i \quad \text{otherwise}$$

- Each agent *appears* to have an incentive to report truthfully

- Issues arising:
 - z^* must be exogenous
 - but how is z^* determined?
 - better than voluntarism in practice? (Rondeau et al. 2005)
Lottery mechanism

- If it is a fair lottery with fixed prize \(P \) then amount of public good is \(g = \phi(\bar{z} - P) \)
 - probability of winning is \(\pi_i = z_i / \bar{z} \)
 - expected utility is \(\psi_i(g) + \pi_i P + y_i - z_i \)

- Again \(i \) makes the Cournot assumption when maximising
 - FOC gives \(\psi'_i(g) = \beta(P) / (z_i - P) \) where \(\beta(P) := 1 - \bar{z}P/z_i^2 < 1 \)
 - A higher \(P \) results in more public good being provided

- Fixed-prize lottery introduces an offsetting externality
 - each time you buy a lottery ticket you affect others’ chances of winning (Morgan 2000, Morgan and Sefton 2000)
Summary

- Design principles associated with social-choice problem
 - Arrow and Gibbard-Satterthwaite theorems connected
 - associated with an imperfect-information problem

- Public goods combine special properties
 - more than one “cause for market failure”
 - easy to solve the characterisation problem
 - implementation problems are much harder

- Mechanism design depends on:
 - the type of public good
 - the economic environment (Morgan 2000, Rondeau et al. 2005)
Coming up...

- Much more on design principles and application
 - apply principles to taxation
 - [lecture 3]
- Introduce “hidden-action” problems
 - moral hazard social insurance
 - [lecture 6]
- More on “hidden-characteristics” problem
 - adverse selection and health insurance
 - [lecture 7]
- Develop analysis of externalities
 - key component of public goods
 - but also wider importance
 - [lecture 9]
Bibliography I

Econometrica 45, 783–809.

