Design: Public Goods

Frank Cowell

EC426

http://darp.lse.ac.uk/ec426

13 October 2014
Outline

Design
 Fundamentals
 Result

Public Goods
 Characterisation
 Public Goods: voluntarism

PG Mechanisms
 PG: Restricted problem
 Second-best schemes

Conclusions
An approach to design

- Start from same point as in Lecture 1
- Arrow (1951) insight is fundamental to Public Economics
 - helps understand concepts of social welfare (Lecture 1)
 - but also connects to an “information+incentives” problem
- Why can’t the government just do what it likes?
 - maybe exogenous constraints
 - more basic: the problem of “manipulability”
- Begin by making this idea more rigorous
 - connect back to the SWF approach
- Then formalise this in a typical PE application
 - game theoretic approach
 - incomplete information
 - hidden characteristics
Social welfare and individual values

- **A social state:** $\theta \in \Theta$

- Individual i’s evaluation of the state $v_i (\theta), i = 1, ..., n$

 - v_i: member of some general class \mathbb{U}
 - \mathbb{U}: evaluation or utility functions $\Theta \rightarrow \mathbb{R}$

- **A profile:** $[v_1, \ldots, v_i, \ldots v_n]$

 - ordered list of functions v_i
 - set of all profiles: \mathbb{V}

- **SWF problem:** find a constitution $\Sigma : \mathbb{V} \rightarrow \mathbb{U}$ satisfying

 - Unrestricted domain
 - Pareto unanimity
 - Independence of Irrelevant Alternatives

- **IF $\mathbb{U}, \mathbb{P}, \mathbb{I}$ hold then Σ must be dictatorial (Arrow 1951)**

 - except where there are fewer than three social states
 - “dictator” i^*: if $v_{i^*} (\theta) > v_{i^*} (\theta')$ then society prefers θ to θ'
Social choice and manipulation

- Use the same framework as previous slide
 - social state: $\theta \in \Theta$
 - individual preferences $v_i(\cdot) \in \mathbb{U}, i = 1, \ldots, n$
 - profile: $[v_1, \ldots, v_i, \ldots v_n] \in \mathbb{V}$

- A social choice function $\Gamma: \mathbb{V} \rightarrow \Theta$
 - compare this with the constitution Σ
 - same domain, but different kind of “output”

- Does an individual i have power in the SCF?
 - if all tell the truth about preferences: $\theta = \Gamma(v_1, \ldots, v_i, \ldots v_n)$
 - if i misrepresents preferences: $\hat{\theta} = \Gamma(v_1, \ldots, \hat{v}_i, \ldots v_n)$

- This reveals a fundamental problem
 - if $v_i(\hat{\theta}) > v_i(\theta)$ then there is an incentive to misrepresent
 - the social-choice function Γ is manipulable
Implementation

- Is the SCF Γ consistent with private economic behaviour?
 - yes if the θ picked out by Γ is also the equilibrium of an appropriate economic game

- A *mechanism* is a partially specified game:
 - rules of game are fixed
 - strategy sets are specified
 - preferences not yet specified

- Plug preferences into the mechanism:
 - does the mechanism have an equilibrium?
 - does the equilibrium correspond to the desired θ?
 - if so, θ is *implementable*

- Wide range of possible and interesting mechanisms
 - Example: the market as a mechanism
 - Implementation problem: find/design an appropriate mechanism
Design result

• Result on the SCF, \(\Gamma \) (Gibbard 1973, Satterthwaite 1975, Ninjbat 2012)

\[
\text{If the set of social states } \Theta \text{ contains at least three elements; and } \Gamma \text{ is defined for all logically possible preference profiles and } \Gamma \text{ is truthfully implementable in dominant strategies, then } \Gamma \text{ must be dictatorial}
\]

• Closely related to the Arrow theorem

• Has profound implications for public economics
 • misinformation may be endemic to the design problem
 • may only get truth-telling mechanisms in special cases

• Interested in two types of solution:
 1. “Full information” (“first best”) solutions
 • needs an information-revealing mechanism
 2. Second-best solutions
 • built-in constraints to prevent misrepresentation
Typology of goods

<table>
<thead>
<tr>
<th>Excludable</th>
<th>Rival</th>
<th>Non-rival</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure private</td>
<td></td>
<td>pure public</td>
</tr>
<tr>
<td>Non-excludable</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

- **Excludable**: is there a way of making people pay for the good?

- **Rival / nonrival**: need extra resources to supply an extra person?
 - For a private good, aggregate consumption is found by summing the consumption of \(n \) individuals
 - For a public good, aggregate consumption equals the consumption of each of the \(n \) individuals
Efficiency: model

- Let x_i be vector of goods consumed by person i, x is aggregate vector of goods
- Consumer i has utility function u_i
- To find an efficient allocation:
 - max utility of any one person i
 - keeping the $n - 1$ others on a fixed utility level $u_\ell (x_\ell) = v_\ell$
 - satisfying production constraint $\Phi(x) = 0$
- Lagrangean is $u_i (x_i) + \sum_{\ell \neq i} \lambda_\ell [u_\ell (x_\ell) - v_\ell] - \mu \Phi(x)$
- For a private good j consumed by person i we have the FOC
 $$\lambda_i \frac{\partial u_i (x_i)}{\partial x_{ij}} = \mu \frac{\partial \Phi(x)}{\partial x_j}$$
- Public good $j = 1$ consumed by everyone equally. The FOC:
 $$\sum_{\ell=1}^{n} \lambda_\ell \frac{\partial u_\ell (x_\ell)}{\partial x_{\ell 1}} = \mu \frac{\partial \Phi(x)}{\partial x_1}$$
Efficiency: result

- Use FOC for a max to characterise efficiency conditions:

- If goods j and k are both private

\[
\frac{\partial u_i(x_i)}{\partial x_{ik}} \div \frac{\partial u_i(x_i)}{\partial x_{ij}} = \frac{\partial \Phi(x)}{\partial x_{k}} \div \frac{\partial \Phi(x)}{\partial x_{j}}
\]

for every agent i: $\text{MRS}_i = \text{MRT}$

- If good j is private and good 1 is public

\[
\sum_{i=1}^{n} \frac{\partial u_i(x_i)}{\partial x_{i1}} \div \frac{\partial u_i(x_i)}{\partial x_{ij}} = \frac{\partial \Phi(x)}{\partial x_{1}} \div \frac{\partial \Phi(x)}{\partial x_{j}}
\]

\[
\sum_{i=1}^{n} \text{MRS}_i = \text{MRT}
\]
Efficiency conditions

- Derived from the FOCs
- If “wrong condition” applied to PGs – get under-provision
Strategic view

- Consider two types of Public-good game. In each case:
 - players (Greek, Roman)
 - actions ([+], [−]): (contribute, not-contribute) to public good
 - payoffs denoted by letters for each player

<table>
<thead>
<tr>
<th>Game 1</th>
<th>Game 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Roman</td>
</tr>
<tr>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>(\beta, B)</td>
<td>(\beta, B)</td>
</tr>
<tr>
<td>(\delta, A)</td>
<td>(\gamma, A)</td>
</tr>
<tr>
<td>[−]</td>
<td>[−]</td>
</tr>
<tr>
<td>(\alpha, D)</td>
<td>(\alpha, C)</td>
</tr>
<tr>
<td>(\gamma, C)</td>
<td>(\delta, D)</td>
</tr>
</tbody>
</table>

- Three efficient outcomes
- But none of these is a NE
- Three efficient outcomes
- Maybe implementable?
Voluntary provision

- Two-good model: i’s utility is $\psi(g) + x_i$

- i is endowed with income y_i, contributes an amount z_i
 - so private consumption is $x_i = y_i - z_i$

- g produced from total contributions $g = \phi(z)$, $z := \sum_{\ell=1}^{n} z_\ell$

- Suppose every agent i makes a Cournot assumption:
 - assumes that $\sum_{\ell=1}^{n} z_\ell - z_i$ is a constant, $\bar{z} - i$
 - perceives problem as “choose z_i to max $\psi(\phi(\bar{z}_i + z_i)) + y_i - z_i$”

- FOC for perceived problem is $\psi'(g) \phi'(z) - 1 = 0$
- So we get $\psi'(g) = \frac{1}{\phi'(z)}$; in other words $\text{MRS}_i = \text{MRT}$

- But for efficiency we need $\sum_{i=1}^{n} \text{MRS}_i = \text{MRT}$
Outcomes of contribution game

Each party makes Cournot assumption

- Nash equilibrium is at intersection of the reaction functions
- Efficient outcomes given by locus of common tangencies
• p_i reflects person i’s Willingness To Pay: $\text{MRS}_i = \text{WTP}_i$
• Sum of WTP equal MC of producing public good g^*
Lindahl

- Introduce concept of “tax price” for funding public goods
- \(p_i \): “tax price” for \(i \) of PG, set by government (Lindahl 1919)
- These “prices” must satisfy \(p_i = \text{WTP}_i \) and \(\sum_{i=1}^{n} p_i = \text{MRT} \)

- What if \(i \) realises that “price” depends on announced WTP?
- WTP announced strategically: \(i \) announces \(\hat{\text{WTP}}_i \) knowing that
 - \(p_i = \hat{\text{WTP}}_i \)
 - amount of public good is \(g = \phi (\text{const} + p_ig) \)
 - private consumption is \(x_i = y_i - p_ig \)

- Suppose \(i \) announces \(\hat{\text{WTP}}_i \) to maximise utility \(\psi(g) + x_i \)
 - then this becomes exactly the problem of voluntary contribution!
Way forward

• Lindahl results in the same suboptimal outcome as voluntarism

• What can be done?
 • public provision through regular taxation
 • change the problem
 • change perception of the problem

• Alternatives to elementary model of individual rationality:
 • truthful revelation as a social norm (Johansen 1977)
 • reciprocity motives in the utility function (Guttman 1987)
 • co-operative outcome in a repeated game (Pecorino 1999)

• More promising: alternative institutional mechanisms
 • Pivot mechanisms in a restricted choice problem
 • “Forced” reciprocity
 • Provision-point mechanisms
 • Lotteries
A binary project

- An all-or-nothing choice (Clarke 1971, Groves and Ledyard 1977)

- $\Theta = \{0, 1\}$. A project in Θ completely characterised by
 - each person i’s endowment y_i of private good
 - payment z_i by i if project goes ahead ($\sum_i z_i = z, \phi(z) = 1$)
 - a system of penalties

- All have zero income effect (ziff) utility: $\tau_i \psi(g) + x_i$
 - where ψ is increasing, concave, τ_i is a taste parameter
 - τ_i reflects Willingness To Pay
Preferences for a binary project

\[v_1(\theta^\circ) > v_1(\theta') \; ; \; v_2(\theta^\circ) < v_2(\theta') \]
A criterion for the project

- Let CV_i be compensating variation for i if project goes ahead.
- If $S := \sum_{\ell=1}^{n} CV_{\ell}$ then appropriate criterion seems to be $S > 0$.
 - gainers could compensate losers
 - but S is unobservable (information on preferences is private)
- So, use instead the announced CV, \hat{CV}_i, and define
 $$\hat{S} := \sum_{\ell=1}^{n} \hat{CV}_{\ell}, \quad \hat{S}_i := \hat{S} - \hat{CV}_i, \quad i = 1, \ldots, n$$
- If \hat{S} and \hat{S}_i have opposite signs then person i is pivotal.
- Now consider the following criterion
 1. Approve (reject) the project if $\hat{S} \geq 0$ ($\hat{S} < 0$)
 2. If i is pivotal, then impose a penalty of \hat{S}_i on person i.
- Mechanism guarantees that truth-telling is a dominant strategy.
Payoff to i under the mechanism

<table>
<thead>
<tr>
<th>$\hat{S}_i < 0$ ((\theta^\circ) chosen)</th>
<th>$\hat{S} \geq 0$ ((\theta') chosen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{S}_i < 0$</td>
<td>$\hat{S}_i \geq 0$</td>
</tr>
<tr>
<td>\hat{S}_i</td>
<td>\hat{S}_i</td>
</tr>
</tbody>
</table>

- Person i’s true valuations are $v_i(\theta^\circ), v_i(\theta')$
- Person i announces $\hat{v}_i(\theta^\circ), \hat{v}_i(\theta')$

Limitations:
- the amounts \hat{S}_i have to be computed for all n persons
- mechanism applies only to binary projects
A binary choice

- Tax/subsidy to persuade people to reciprocate? (Gradstein 1998)

- All have same ziff utility, endowed with 1 unit of private good
 - i’s contribution choice is represented as $z_i \in \{0, 1\}$
 - i has unobservable cost of contribution c_i
 - Utility: $\psi(g) + 1 - z_i c_i$

- Public good production: $g = \phi(q)$
 - where q is proportion of contributors

- For an efficient outcome want low-cost agents to contribute
 - for some cut-off value \bar{c},
 \[
 z_i = \begin{cases}
 1 & \text{if } c_i \leq \bar{c}, \\
 0 & \text{otherwise}
 \end{cases}
 \]

- If provision is left to private action there will be underprovision
Binary choice: tax/subsidy

- Government knows the distribution $F(\cdot)$ of contribution costs
 - can condition on the threshold value \bar{c}
- Design tax/subsidy scheme based on observables:
 - subsidy $s > 0$ if you contribute
 - tax $t > 0$ if you don’t contribute
- person with critical cost \bar{c} gets utility:
 - $\psi(g) + 1 - \bar{c} + s = \psi(g) + 1 - t$
 - implies $s + t = \bar{c}$
- Those with costs $c_i < \bar{c}$ will contribute; those with $c_i > \bar{c}$ will not
- Breakeven achieved if $sF(\bar{c}) = t[1 - F(\bar{c})]$
 - the necessary tax to achieve this is $t = \bar{c}F(\bar{c})$
Provision-point mechanism

- Voluntary contribution *plus* target value \(z^* \) *plus* refund scheme
 - target \(z^* \) exceeded: a rebate in proportion to your contribution
 - if \(z^* \) is not reached, all contributions refunded

- If total contributions are \(\bar{z} \) and agent \(i \)'s share is \(\pi_i \), utility is

\[
\psi(\phi(z^*)) + \pi_i[\bar{z} - z^*] + y_i - z_i, \quad \text{if } \bar{z} \geq z^*
\]
\[
y_i \quad \text{otherwise}
\]

- Each agent *appears* to have an incentive to report truthfully

- Issues arising:
 - \(z^* \) must be exogenous
 - but how is \(z^* \) determined?
 - better than voluntarism in practice? (Rondeau et al. 2005)
Lottery mechanism

- If it is a fair lottery with fixed prize P then amount of public good is $g = \phi(\bar{z} - P)$
 - probability of winning is $\pi_i = z_i / \bar{z}$
 - expected utility is $\psi_i(g) + \pi_i P + y_i - z_i$

- Again i makes the Cournot assumption when maximising
 - FOC gives $\psi'_i(g) = \beta(P)/(z_i - P)$ where $\beta(P) := 1 - \bar{z}P/z_i^2 < 1$
 - A higher P results in more public good being provided

- Fixed-prize lottery introduces an offsetting externality
 - each time you buy a lottery ticket you affect others’ chances of winning (Morgan 2000, Morgan and Sefton 2000)
Summary

• Design principles associated with social-choice problem
 • Arrow and Gibbard-Satterthwaite theorems connected
 • associated with an imperfect-information problem

• Public goods combine special properties
 • more than one “cause for market failure”
 • easy to solve the characterisation problem
 • implementation problems are much harder

• Mechanism design depends on:
 • the type of public good
 • the economic environment (Morgan 2000, Rondeau et al. 2005)
Coming up...

- Much more on design principles and application
 - apply principles to taxation
 - [lecture 3]
- Introduce “hidden-action” problems
 - moral hazard social insurance
 - [lecture 6]
- More on “hidden-characteristics” problem
 - adverse selection and health insurance
 - [lecture 7]
- Develop analysis of externalities
 - key component of public goods
 - but also wider importance
 - [lecture 9]

